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Abstract

This paper is a write-up for a group exploration of Fractional Linear Trans-
formations at PROMYS Europe 2023. We are mainly interested in the cycles
generated by such transformations on the set Pp, but also discuss other prop-
erties and criteria, and look at infinite fields. In this paper, we show possible
cycle lengths and prove conjectures concerning them. Our methods involve a
correspondence of fractional linear transformations with matrices, using linear
algebra to prove results.
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1 Introduction

1.1 Overview of this paper

Throughout this paper, we will be looking at the correspondence between matrices
and FLTs, using linear algebra to compute and prove results. In particular, we’ll
be studying ideas about possible cycle lengths such as whether or not we can have
one cycle of length |Pp| = p + 1, understanding the criteria for fixed points of f ,
characterizing cycles of particular functions, compositions and inverses of FLTs,
computing the number of possible FLTs on Pp, the relationship between FLTs and
continued fractions when considering them over R, and other interesting conjectures.
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2 Definitions and properties

2.1 Fractional linear transformations

We start by defining the principal object that we will explore throughout this paper:
Definition A fractional linear transformation (FLT), is a function of the form

f(x) =
ax+ b

cx+ d

with the condition that ad− bc ̸= 0.

2.2 Domain and range Pp

If we want to define an FLT f on the field Zp, the image of x is not defined if
cx + d = 0. To avoid this, we adjoin a new element ∞, defining e

0
= ∞ for e ̸= 0

and f(∞) = a
c
. Let Pp denote the union Zp ∪ {∞}.

The function f defined on Pp is now well-defined, as we never encounter ax + b =
0, cx+ d = 0 simultaneously, since this would imply ad− bc = 0.

2.3 Composition and inverse

Consider the two FLTs fi(x) =
aix+ bi
cix+ di

for i = 1, 2. We start by computing the

composition of f1 and f2

(f2 ◦ f1)(x) =
(a2a1 + b2c1)x+ (a2b1 + b2d1)

(c2a1 + d2c1)x+ (c2b1 + d2d1)
.

We can also compute the inverse of f to get

f−1(x) =
1

ad− bc

dx− b

−cx+ a

(well-defined as ad− bc ̸= 0).
Notice that composing and inverting FLTs resembles multiplying and inverting ma-
trices with the same coefficient. We will later see how we can formalise this notion
and use it to our advantage...

2.4 Cycles and cycle lengths

The function f is a permutation of the finite set Pp. Applying f repeatedly to x
generates a subset Pp: the cycle generated by x. It is a finite set, and we say that
the cycle generated by x has length l if this set has size l. Define the length Lf of
an FLT f to be the ordered tuple of its cycle lengths:

Lf = (l1, l2, ..., lk)

Where l1 ≤ l2 ≤ ... ≤ lk are the lengths of the cycles of f .
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3 Matrix and vector representations

3.1 Vector representation

We notice that there exists a bijection between element Pp and the set of lines of
(Z2

p)
× that pass through the origin, as we can assign to each line of (Z2

p)
× a slope in

Pp.
We can therefore map the vectors of (Z2

p)
× to elements of Pp with the map ρ :

(a, b) 7→ a
b
.

Notice that ρ(a, b) = ρ(a′, b′) ⇐⇒ (a′, b′) = λ(a, b) for some λ ∈ Z×
p .

In the following parts of the paper, we will say that the vector (a, b) represents a
b

and we may represent a
b
by any element of ρ−1(a

b
) = {λ(a, b) | λ ∈ Z×

p }.

3.2 Matrix representation

In this section we will formalise the relation between FLTs and matrices.
Consider the map

ϕ : GL2(Zp) −→ FLT(
a b
c d

)
7−→ ax+ b

cx+ d

And in general we will use the notation Mf to denote any matrix with ϕ(Mf ) = f

Proposition f(ρ(v)) = ρ(Mfv)

Proof. Write Mf =

(
a b
c d

)
, so f = ϕ(Mf ) =

ax+ b

cx+ d
, and v =

(
α
β

)
, so x = ρ(v) =

α

β
. Then in the case where β ̸= 0, we have

f(ρ(v)) = f

(
α

β

)
=

a(α
β
) + b

c(α
β
) + d

=
aα + bβ

cα + dβ
= ρ

((
aα + bβ
cα + dβ

))
= ρ(Mfv)

In the case β = 0, α ̸= 0, so ρ(v) = ∞, meaning

ρ(Mfv) = ρ

((
aα
cα

))
=

a

c
= f(∞) = f(ρ(v)))

We check that two matrices that are mapped to the same FLT are scalar multiples
of each other:

Proposition For M,M ′ ∈ GL2(Zp), ϕ(M) = ϕ(M ′) ⇐⇒ M = λM ′ for some
λ ∈ Z×

p

Proof. Write M =

(
a b
c d

)
, M ′ =

(
a′ b′

c′ d′

)
and ϕ(M) = f , ϕ(M ′) = g

(⇒) : If ϕ(M) = ϕ(M ′) and M ′, then we have that ∀α, β ∈ Pp

ρ

(
M

(
α
β

))
= ρ

(
M ′

(
α
β

))
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Therefore

ρ

((
aα + bβ
cα + dβ

))
= ρ

((
a′α + b′β
c′α + d′β

))
Taking (α, β) = (1, 0), (0, 1) yields

ρ

((
a
c

))
= ρ

((
a′

c′

))
and ρ

((
b
d

))
= ρ

((
b′

d′

))
So a = µa′, c = µc′ and b = νb′, d = νd′ for some µ, ν ∈ Z×

p

Similarly, by taking (α, β) = (1, 1), we get

ρ

((
a+ b
c+ d

))
= ρ

((
a′ + b′

c′ + d′

))
And so a+ b = ω(a′ + b′), c+ d = ω(c′ + d′) for some ω ∈ Z×

p .
Combining these equations gives us{

a′ + νb′ = ω(a′ + b′)
µc′ + νd′ = ω(a′ + d′)

So we have

M ′
(
µ
ν

)
= M ′

(
ω
ω

)
And since M ′ ∈ GL2(Zp), it is invertible, giving(

µ
ν

)
=

(
ω
ω

)
So µ = ν, and therefore M = µM ′

(⇐) : If M = λM ′, then for any v ∈ (Z2
p)

×, Mv = (λM ′)v = M ′(λv) =⇒ ρ(Mv) =
ρ(M ′(λv)) =⇒ f(ρ(v)) = g(ρ(λv)) = g(ρ(v)), therefore f(x) = g(x) ∀x ∈ Pp, and
so f = g.

3.3 Fixed points and eigenvectors

We recall that λ is an eigenvalue of a matrix M if and only if there exists a non-zero
vector v such that Mv = λv. This relation is equivalent to (M − λI)v = 0, which
has a non-zero solution if and only if det(M − λI) = 0. We hence define the char-
acteristic polynomial cM(x) = det(xI −M) = x2 −TrMx+ detM , whose roots are
the eigenvalues of M .

Proposition x = ρ(v) is a fixed point of f ⇐⇒ v is an eigenvector of Mf over Zp

Proof. (⇐): Given an eigenvector v of Mf whose eigenvalue λ ∈ Up, we have that
Mfv = λv so ρ(Mfv) = ρ(λv) = ρ(v), so f(ρ(v)) = ρ(v), meaning ρ(v) is a fixed
point of f .

(⇒): Given a fixed point x ∈ Pp, since ρ is a surjection, there exists v ∈ (Z2
p)

×

such that ρ(v) = x. So f(x) = x = ρ(v), f(ρ(v)) = ρ(Mv) = ρ(v), which implies
Mv = λv for some λ ∈ Zp, therefore v is an eigenvector.
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Proposition For FLTs f and g, if Mf ∼ Mg, then Lf = Lg

Proof. Mf ∼ Mg implies that there exists an invertible matrix P such that Mf =
P−1MgP .
For any k ∈ N, an eigenvector v of Mk

f and its corresponding eigenvalue λ will have

λv = Mk
f v = P−1Mk

g Pv

And multiplying by P gives us

Pλv = λ(Pv) = Mk
g (Pv)

Therefore there is a bijection between the eigenvectors of Mk
f and the eigenvectors of

Mk
g . Hence their corresponding FLTs generate the same cycle lengths, so Lf = Lg.
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4 How many unique FLTs are there in Pp?

4.1 Counting

4.1.1 Definitions and motivations

Due to the correspondence between FLTs and matrices, to determine the number of
unique FLTs in Pp we should look at the number of invertible 2x2 matrices modulo
p. Our matrices are invertible since ad− bc ̸= 0.

Lemma 3.1 Given a prime p, |GL2(Zp)| = p(p− 1)2(p+ 1)

Proof.

We start by counting all elements of M2(Zp). We have freedom for each of the 4
entries to be any of the p elements of Zp and thus there are p4 distinct elements of
M2(Zp), so |M2(Zp)| = p4.

Now we wish to exclude non-invertible elements M of M2(Zp), i.e. M for which

det(M) = 0, taking M =

(
a b
c d

)
, this is equivalent to ad = bc. So, we split into

the cases of different numbers of entries that are 0.

Case 1. All four entries are 0.
There is trivially only 1 such matrix.

Case 2. Exactly three entries are 0.
By the pigeon-hole principle, both ad and bc are equal to zero and so we only have
freedom on the non-zero variable of which there are p− 1 possibilites meaning there
are

(
4
1

)
·(p− 1) = 4(p− 1) total possiblities in this case.

Case 3. Exactly two entries are 0.
As we want ad− bc = 0, we need that exactly one of a or d are zero and exactly one
of b and c are zero. Therefore there are (p− 1)2 possiblities for the other two values
and so there are

(
2
1

)
·
(
2
1

)
·(p− 1)2 = 4(p− 1)2 total possiblities in this case.

Case 4. Exactly one entry is 0.
If either side of ad = bc is zero then the other side must also be zero. Since there are
no zero divisors in Zp, we would have more than one variable equal to zero which is
a contradiction to our case. Therefore, there are 0 total possibilities in this case.

Case 5. Exactly zero entries are 0.
Suppose a, b, c are given, then ad = bc ⇐⇒ d = bca−1 where a−1 must exist in Zp

since (a, p) = 1 =⇒ a is invertible. This means that we have freedom of choice on
three entries (given that they are non-zero) and so there (p− 1)3 total possibilities
in this case.
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So we have

(p− 1)3 + 0 + 4(p− 1)2 + 4(p− 1) + 1

= (p− 1)3 + 4(p− 1)2 + 4(p− 1) + 1

non-invertible matrices.
By the inclusion-exclusion principle, we have that

|GL2(Zp)| = p4 − ((p− 1)3 + 4(p− 1)2 + 4(p− 1) + 1)

= p(p− 1)2(p+ 1)

Now, since for M,M ′ ∈ GL2(Zp), ϕ(M) = ϕ(M ′) ⇐⇒ M = λM ′ for some λ ∈ Z×
p ,

we have that each f ∈ FLT is mapped to by exactly (p − 1) elements of GL2(Zp),
meaning

|FLT| = |GL2(Zp)|
p− 1

= (p− 1)p(p+ 1)

Alternative proof 1:

Proof.

Consider the FLT f . We distingish between two cases:

Case 1: a = 0:
Since a = 0 and ad− bc ̸= 0, b ̸= 0 and we can fix b to be 1. We now have p possible
choices for d. To find the number of choices for c, we notice that ad− bx = 0 has a
unique solution for b ̸= 0. Hence we have p− 1 choices for c, and (p− 1)p FLTs.

Case 2:
a ̸= 0:
We can fix a to be 1. We then choose b and c with p choices for each. In the same
way as in the previous case, ax− bc = 0 has a unique solution as a ̸= 0. Hence we
have p− 1 choices for d. This yields (p− 1)p2 FLTs.

Therefore, we get (p− 1)p+ (p− 1)p2 = (p− 1)p(p+ 1) FLTs in total.
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Alternative proof 2:

Lemma: For FLTs f and g over Pp we have that

f(0) = g(0) f(1) = g(1) f(∞) = g(∞)

⇐⇒ f(x) = g(x)

Proof.

f(x) =
ax+ b

cx+ d

g(x) =
a′x+ b′

c′x+ d′

We consider the following system of equations.

f(∞) = g(∞) ⇔ a

c
=

a′

c′

f(0) = g(0) ⇔ b

d
=

b′

d′

f(1) = g(1) ⇔ a+ b

c+ d
=

a′ + b′

c′ + d′

This gives us that
a = µa′ c = µc′

b = λb′ d = λb′

⇒ a+ b = ω(a′ + b′) , c+ d = ω(c′ + d′)

For some µ, λ, ω ∈ Up

Substituting into the 3rd pair of equations gives

µa′ + λb′ = ω(a′ + b′) µc′ + λd′ = ω(c′ + d′)

Dividing one by the other leaves

µa′ + λb′

µc′ + λd′
=

ωa′ + ωb′

ωc′ + ωd′
(µ
λ
)a′ + b′

(µ
λ
)c′ + d′

=
a′ + b′

c′ + d′

Or equivalently

g
(µ
λ

)
= g

(
1
)

And since all FLTs are invertible, we have µ
λ
= 1, so µ = λ, so we have:

f(x) =
ax+ b

cx+ d
=

µ(a′ + b′)

µ(c′ + d′)
=

a′x+ b′

c′x+ d′
= g(x)

Using this property, we can uniquely identify a FLT by the values it maps 0, 1 ∞
to. And given the mappings of 0, 1 and ∞, it is trivially true that there exists an
FLT which gives these mappings. Therefore it follows that given a prime p, there is
a bijection between distinct FLTs and mappings of 0, 1, and ∞ to distinct elements
of Pp. So there are exactly (p− 1)p(p+ 1) distinct FLTs.
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5 Properties of cycles generated over Pp

Lemma 5.1 If a FLT f has more than 2 fixed points, then f = Id.

Proof.

Suppose that f ̸= Id. we have that f has a fixed point at x if and only if
f(x) = ax+b

cx+d
= x, meaning cx2 + (d − a)x − b = 0. This is a non-zero polyno-

mial of degree ≤ 2 in Zp[x], so has at most 2 roots in Zp, meaning f has at most 2
fixed points.

Notice that we must consider the special case where x = ∞ is a fixed point, which
happens if and only if c = 0 and a ̸= 0, in which case the polynomial cx2+(d−a)x−b
is in fact linear, so can yield at most 1 solution, so in this case we still get that f
has at most 2 fixed points.

For the case where f is the identity, every point in the domain is a fixed point, so f
has more than 2 fixed points.

Definition (Discriminant) Given a FLT f(x) = ax+b
cx+d

, we define ∆f to be the dis-
criminant of the quadratic equivalent to f(x) = x, so

∆f = (a− d)2 + 4bc

Corollary 5.1 Given a FLT f ̸= Id
f has 2 fixed points ⇐⇒ ∆f is a QR mod p
f has 1 fixed point ⇐⇒ ∆f ≡ 0 mod p
f has no fixed points ⇐⇒ ∆f is QNR mod p

Definition (Order) The order of a FLT, ord(f), is defined as:

ord(f) := min{n ∈ N : fn = Id}

This function is well-defined since given a prime p, the set of all FLTs is finite and
forms a group under composition.

Lemma 5.2 ∀a ∈ Pp, there exists k ∈ N such that fk(a) = a

Proof.

Consider the sequence S = (fn(a)))n∈N∪{0}. Since Pp is finite and S is an infinite
sequence whose elements are all in Pp, we must have that at least 1 element of S
appears twice. Say that the element fm(a) appears twice, then fm−1(a) must also
appear twice, since f−1 is well defined. And we can repeat this inductively to get
that f 0(a) = a appears twice. Therefore there is some k ∈ N such that fk(a) = a.
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Lemma 5.3 If fk(a) = a then cyc(a) = {a, f(a), f 2(a), ..., fk−1(a)}

Proof.

For any t ∈ N∪{0} we have that f t+k(a) = f t(fk(a)) = f t(a). Therefore t ≡ s mod
t implies f s(a) = f t(a).
So all iterates f r(a) with r ≥ t are equal to some element in the set

{a, f(a), f 2(a), ..., fk−1(a)}

meaning cyc(a) = {a, f(a), f 2(a), ..., fk−1(a)}.

Lemma 5.4 If a ∈ cyc(b), cyc(a) = cyc(b)

Proof.

From the definition of a cycle, a = fk(b) for some k ∈ N ∪ {0}. Then (from the
definition of a cycle) we have that f t(a) = f t+k(b) ∈ cyc(b) for all t ∈ N ∪ {0} so
cyc(a) ⊆ cyc(b).

Claim: b ∈ cyc(a)
FTSOC, suppose b /∈ cyc(a), then for all r ∈ N with r ≥ k, f r(b) = f r−k(a) ̸= b.
The same holds for all r such that 0 < r < k since f r(b) = b implies (by Lemma 4.3)
that cyc(b) = {b, f(b), f 2(b), ..., f r−1(b)}, but clearly a is not in this set. So there is
no r ∈ N such that f r(b) = b, which contradicts Lemma 4.2.

Therefore b ∈ cyc(a), so cyc(b) ⊆ cyc(a), so cyc(a) = cyc(b).

Corollary 5.2 The sum of the cycle lengths generated by f over Pp is |Pp| = (p+1).
This follows from Lemma 4.4 since we get that the cycles generated by f over Pp

partition Pp, so the sum of their lengths = |Pp| = (p+ 1)

Lemma 5.5 ℓ is the smallest natural number such that f ℓ(a) = a ⇐⇒ |cyc(a)| = ℓ

Proof.

(⇒)
By Lemma 5.3 cyc(a) = {a, f(a), f 2(a), ..., f ℓ−1(a)}. Furthermore, each of these
elements must be distinct, since if we had f i(b) = f j(b) for some 0 ≤ i < j < ℓ
then we would have f j−i(b) = b, which contradicts the minimality of ℓ. Therefore
|cyc(a)| = ℓ.

(⇐)
Notice that by Lemma 5.2 we have that there is k ∈ N such that fk(a) = a, so there
must be a minimal value in N with this property, say k, then the same reasoning as
above shows that cyc(a) = {a, f(a), f 2(a), ..., f ℓ−1(a)} and that k = |cyc(a)| = ℓ, so
k = ℓ.
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Lemma 5.6 ∀x ∈ Pp, |cyc(x)| ≤ ord(f)

Proof.

Take n = |cyc(x)|, then ∀x ∈ cyc(x), By Lemma 4.5 we have that

x, f(x), f 2(x), f 3(x), ..., fn−1(x)

are distinct. FTSOC, suppose that n > ord(f). Then x ̸= f ord(f)(x), which contra-
dicts the definition of ord(f).

Lemma 5.7 If |cyc(a)| = ℓ then f ℓ fixes all b ∈ cyc(a)

Proof.

By Lemma 5.4, for all b ∈ cyc(a), cyc(b) = cyc(a), so by Lemma 4.5 f ℓ fixes b.

Theorem 5.1 A FLT has at most 2 distinct cycle lengths

Proof.

Take α, β, γ ∈ Pp with

a = |cyc(α)| b = |cyc(β)| c = |cyc(γ)|

And FTSOC, suppose a, b, c are distinct. WLOG we can assume a < b < c. We
consider the following 2 cases:

Case 1. a = 1
In this case we get b > a = 1, so b ≥ 2. Since α is in a cycle of length 1, fk fixes α
for all k ∈ N. And by Lemma 4.7 we have that f b fixes all x ∈ cyc(β), therefore f b

fixes ≥ 3 points, so by Lemma 4.1 f b = Id. But by Lemma 4.6, we get

c = |cyc(γ)| ≤ ord(f) ≤ b < c

Contradiction.

Case 2. a ̸= 1
In this case we get b > a ≥ 2, so b ≥ 3, which leads to the same contradiction.

Theorem 5.2 If a FLT has no fixed points, it has 1 distinct cycle length

Proof.

FTSOC suppose we have a FLT f with no fixed points and 2 distinct cycle lengths
a and b. WLOG we can assume a < b, and since f has no fixed points, there are no
cycles of length 1, so we have 1 < a < b.

13



We consider the following 2 cases:
Case 1. a ≥ 3
By Lemma 5.7, fa fixes every element in cyc(a), meaning fa has ≥ 3 fixed points,
so by Lemma 5.1 fa = Id, so ord(f) = a < b, which contradicts Lemma 5.6.

Case 2. a = 2
In this case we must have that f 2 has 2 fixed points by Lemma 5.7 and is not the
identity (else we reach the same contradiction as in case 1).
By Corollary 4.1, if we take f(x) = ax+b

cx+d
, then ∆f is a QNR mod p. But notice that

∆f2 = (a+ d)2((d− a)2 + 4bc) = (a+ d)2∆f .
Since f 2 has fixed points, we have that ∆f2 = 0 or ∆f2 is a QR mod p. But ∆f2

cannot be a QR, since ∆f is a QNR, meaning we must have ∆f2 = 0, but since
∆f ̸= 0, (a+ d)2 = 0 so a+ d = 0, leaving

f 2(x) =
(a2 + bc)x+ b(a+ d)

(a+ d)x+ (bc+ d2)
=

(a2 + bc)x

a2 + bc
= x

Contradiction.

Remarks

Combining the results of Theorem 5.1 and 5.2, we can describe the general structure
of a FLT’s cycles over Pp given its number of fixed points:

Case 1. No fixed points:
d cycles of length p+1

d

Case 2. 1 fixed point:
1 cycle of length 1 and 1 cycle of length p

Case 3. 2 fixed points:
2 cycles of length 1 and d cycles of length p−1

d

So we have that given an odd prime p, the set of possible cycle lengths is a subset
of the set of positive divisors of (p− 1), p and (p+ 1).

In the next section we prove that in fact these two sets are equal...
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6 Possible cycle lengths

In this section, we will prove the main results of this paper:

Theorem (Classification of FLTs) Let λ1,2 be the eigenvalues of Mf (possibly in

Zp

[√
δ
]
) and d the order of λ1

λ2
. Then the possible lengths Lf are

• Lf = (1, . . . , 1) ⇐⇒ Mf = I

• Lf = (1, 1, d, . . . , d) ⇐⇒ Mf has two eigenvalues in Zp

• Lf = (1, p) ⇐⇒ Mf has one eigenvalue and Mf ̸= I.

• Lf = (d, . . . , d) ⇐⇒ Mf has two eigenvalues in Zp

[√
δ
]

We first need a lemma:
Lemma If M ∈ GL2(Zp) has three eigenvectors v1, v2, v3, pairwise independent,
then M = I.

Proof. In Z2
p, M has either two eigenspaces Eλ1 , Eλ2 of dimension 1 or one eigenspace

Eλ1 of dimension at most 2. By the Pigeonhole principle, one eigenspace Eλi
contains

two idependent vectors vi, vj. As vi, vj are independent, they span the set Z2
p. Hence

Eλi
= Z2

p. That is, for all v ∈ Z2
p,Mv = λiv. This equivalent to (M − λiI)v = 0.

This yieds M − λiI = 0, and thus M = λiI = I.

We now prove the theorem:

Proof. (⇒) This direction of the proof is pretty straightforward, by comparing the
number of the 1-cycles with the number of eigenvalues.
(⇐) We consider each of the cases:

• If Mf = I, then all vectors are eigenvectors of Mf , and Lf = (1, ..., 1).

• If Mf has two eigenvalues, then Mf has two fixed points, so l1 = l2 = 1. Now,
the next cycle, of length l3, provides a new eigenvalue to M l3

f . M l3
f has now

three eigenvectors. By the previous lemma, M l3
f = I, and Lf = (1, 1, l3, ..., l3).

To show that l3 = d, write D = diag(λ1, λ2) so that M = PDP−1 for some
P ∈ GL2, we notice that M

k
f = I if and only if λk

1 = λk
2, as M

k
f = PDkP−1 = I

implies I = Dk = diag(λk
1, λ

k
2).

• If Mf has no eigenvalues in Z×
p then the eigenvalues of Mf satisfy λ2 = λ1.

We have that M l1
f has a eigenvector, so λl1

1 = λ1
l1
= λl1

2 . This implies that

M l1
f = I as we can write M l1

f = PDl1P−1 = I for P invertible matrix. This

implies that I = Dl1 = diag(λl1
1 , λ

l1
2 ). By minimality of l1, l1 = d. We get that

Lf = (d, ..., d).

• If Mf has one eigenvalue, then l1 = 1 and l2 ≤ 2. This implies that M l2
f

has at least three eigenvectors. By the previous lemma, M l2
f = I and Lf =

(1, l2, ..., l2). Now we have l2 | (p + 1) − 1 = p and l2 ̸= 1, so l2 = p. Hence
Lf = (1, p).
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Theorem The set of possible cycles lengths is the set of divisors of (p − 1), p and
(p+ 1).

Proof. We distinguish between the three following cases:

• If d | p− 1, then let g be a generator of Up. The function represented by the

matrix diag(g
p−1
d , 1) had cycle lengths (1, 1, d, ..., d).

• If d | p, then we just need to consider d = p. We can check that the function
x+ 1 gives a 1-cycle ∞ and a p-cycle 0 7→ 1 7→ ... 7→ p− 1.

• If d | p+ 1 then we only need to find a function f that gives a p+ 1-cycle, as

then f
p+1
d gives d-cycles. We will prove this in the next section...

16



7 Cycle of length p + 1

We will show that for all odd primes p, we can find a FLT that generates one
(p+ 1)-cycle.
Let f a FLT such that Mf has no eigenvalues in Zp. First, notice that as there are
no 1-cycles, the characteristic polynomial cf of the matrix Mf has no eigenvalues in
Zp.

Proposition: Let δ be a QNR mod p. Then the ring Zp[
√
δ] is a field.

Proof.

We can check that the inverse of a + b
√
δ is

a− b
√
δ

a2 − b2δ
, which is well-defined since

a2 − b2δ ̸= 0, since δ is a QNR.

Corollary: Zp[
√
δ]× is cyclic.

Proposition: Let g be a generator of Zp[
√
δ]×. Then p+ 1|ord(g

g
).

Proof.

Notice that the order of g is p2 − 1, as it is the number of elements in Zp[
√
δ]×. Let

d be the order of
g

g
. Then gd = gd = gd, so gd ∈ Up. We claim that gd is a primitive

root of Up.
Indeed suppose that there exists x ∈ Up such that gdk ̸= x for all k ∈ N. Then we
can write x = ge for some e such that d does not divide e. Then there exist q, r

such that r = e − dq and 0 < r < d. But then gr = ge−dq ∈ Zp and

(
g

g

)r

= 1.

Contradiction.
Now as gd is a primitive root, its order is p− 1. In particular, (gd)p−1 = gd(p−1) = 1,
and therefore p2 − 1 | d(p− 1), or p+ 1 | d.

Now consider the matrix

T =

(
g + g −gg
1 0

)

This matrix has eigenvalues, g and g. By the Theorem of Classification of FLTs,

LT =

(
ord

(
g

g

))
= (p+ 1).

17



8 FLTs that generate the same cycle lengths for

all primes

In this section we will study a few examples of FLTs over Pp that only generate
cycles of length 1 and ℓ regardless of the prime p.

Example 1: The FLT f(x) =
x− 1

x+ 1
only generates cycles of lengths 1 and 4

The corresponding matrix

Mf =

(
1 −1
1 1

)
has characteristic polynomial (1 − λ)2 + 1 = 0, so the eigenvalues of Mf , are

λ1 = 1 + i =
√
2e

πi
4 and λ2 = 1− i =

√
2e−

πi
4

and we have that
λ2
1 = i, λ3

1 = −1 + i, λ4
1 = −1

λ2
2 = −i, λ3

2 = −1− i, λ4
2 = −1

Therefore, λ4
1 = λ4

2 ∈ Zp for all primes p, so M4
f has one eigenvalue, and this eigen-

value is in Zp for all p prime. So we must always have ord(f) = 4, so all other cycles
must be 4 cycles.

A further observation is that λ1, λ2 ∈ Zp if and only if -1 is a QR mod p, or equiva-
lently, p ≡ 1 (mod 4), so we get p+1

4
cycles of length 4 for p ≡ 3 (mod 4) and get 2

1-cycles and p−1
4

4 cycles.

Example 2: f(x) =
x− 3

x+ 1
only generates cycles of lengths 1 and 3

A similar analysis of the corresponding matrix

(
1 −3
1 1

)
, yields eigenvalues λ1 =

2e
πi
3 , λ2 = 2e−

πi
3 , and that the smallest power we must raise the eigenvalues to for

them to be equal is 3. And these eigenvalues are in Zp for all primes p so we always
have ord(f) = 3.

Constructions: Here we construct FLTs that only generates cycles of lengths 1
and ℓ

It is easy to see from the reasoning in the above examples that if the eigenvalues
λ1, λ2 of Mf are such that λ1 is a multiple of a ℓth primitive root of unity in C such

that λ1 ∈ Zp[
√
δ] or λ1 ∈ Zp for all primes p and λ2 = λ1. Then we have that f will

only generate cycles of lengths 1 and ℓ.

The case ℓ = 2 is simple since we can take λ1 = i and λ2 = −i, giving the charac-
teristic polynomial λ2 + 1 = 0 so Tr(Mf ) = 0 and det(Mf ) = 1. An example of a

suitable corresponding matrix is Mf =

(
1 −2
1 −1

)
, so we get that f(x) =

x− 2

x− 1
only

generates cycles of lengths 1 and 2.

18



The case ℓ = 5 is difficult given that e
πi
5 = 1

4
(1 +

√
5) +

√
5
8
−

√
5
8
i which has no

multiple which is in Zp[
√
δ] or Zp in general.

However, for ℓ = 6, we have that e
πi
6 =

√
3
2
+ 1

2
i, so we can choose λ1 = 2

√
3e

πi
6 =

3 +
√
3i and λ2 = 2

√
3e−

πi
6 = 3 −

√
3i. This gives the characteristic polynomial

λ2 − 6λ+ 12 = 0, so Tr(Mf ) = 6 and det(Mf ) = 12, so a suitable matrix is

Mf =

(
3 1
−3 3

)
so f(x) =

3x+ 1

−3x+ 3

So we have that this f generates only cycles of lengths 1 and 6 for all primes p, with
cycles of length 1 if and only if 3 is a QR mod p, or equivalently p ≡ ±1 (mod 12).
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9 Real Numbers

In this section we’ll be looking at FLTs over the field of real numbers.

9.1 Fixed Point iteration on FLTs

The fixed point iteration of some function f is given by

f(xn) = xn+1

for some initial value x0 ∈ R. Notice that this is analogous to cycles in finite fields.
It came to the author in a dream that for continuous functions f , the sequence
x0, x1, ..., xn converges to a fixed point given that |f ′(x0)| < 1.

By Lemma 5.21 a non-identity FLT can have at most 2 fixed points.

Lemma 8.1 For any initial value x0 ∈ R, the fixed point interation of a FLT f
converges to at most one fixed point.

Proof.

Let f(x) be a FLT.
The lemma is equivalent to proving that if there exist two fixed points, |f ′(x)| < 1
at exactly one of the fixed points.

We further claim that the gradient at one fixed point is the reciprocal of the gradient
at the other fixed point. This is enough to prove the lemma.

The asymptotes of any FLT are the lines x = −d
a

and y = a
c
. Translating doesn’t

affect the gradient, and the translates of the fixed points are the fixed points of
the translated function so without loss of generality, translate our FLT so that the
asymptotes become x = 0 and y = 0 forcing a = 0 and d = 0. This means that f(x)
translates to g(x) = b

cx
which is the same as g(x) = k

x
where k = b

c
. We also assume

that k is positive without losing generality. If you take some point (x0, y0) on g,
reflecting this across the line y = −x maps it to (−y0,−x0) which is also on g(x)
since y = k

x
⇐⇒ x = k

y
. Let (xf , xf ) be a fixed point on g then reflecting across

y = −x gives us the second fixed point (−xf ,−xf ). This means that g has a line
of symmetry with gradient −1 meaning that any FLT has a line of symmetry with
gradient −1 or 1 by reversing the translation and considering the generalisations
made. Since a fixed point reflected under such a line of symmetry maps to the other
fixed point, and also because the x and y coordinates swap, it must be true that the
gradients of the fixed points are inverses.
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9.2 Diophantine Approximation

Lemma 8.2 Given a non-square natural number d, and m ∈ R>0 : m >
√
d, we

claim that for

f(x) =
mx+ d

x+m

∀x ∈ R>0 : lim
n→∞

fn(x) =
√
d

Proof.

f(x) =
mx+ d

x+m
= m+

d−m2

x+m

⇒ f ′(x) =
m2 − d

(x+m)2

m2 − d

(x+m)2
= 1− x2 + 2mx+ d2

x2 + 2mx+m2

Note that f ′(x) is monotone decreasing in the positive reals, hence the maximum
value of f ′(x) is precisely f ′(0) and f ′(0) = 1− d2

m2 .

Hence for all x ∈ R>0 we have that f ′(x) < 1− d2

m2 < 1. Hence

|f(x)− f(f(x))|
|f(x)− x|

< 1− d2

m2
< 1

Then, define the sequence (xn)
∞
0 := fn(x0). Let ϵ = 1− d2

m2 . Then it follows that

|xn − xn+1| < ϵ · |xn − xn−1|

⇒ ϵ · |xn − xn−1| < ϵ2 · |xn−1 − xn−2|

Then by induction on n it follows that

|xn − xn+1| < ϵn · |x1 − x0|

⇒ lim
n→∞

|xn − xn+1| = 0

Therefore the sequence (xn) converges to some limit L in the positive reals.

lim
n→∞

fn(x) = L ⇒ f(L) = L

⇒ f(L) =
mL+ d

L+m
= L

⇒ L2 = d ⇒ L =
√
d

As required.
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9.3 Numerical Examples

We consider the above proof to explore the structure of the convergents generated
by the sequence (an)

∞
0 compared the the continued fraction convergents.

√
2 = [1; 2]

1 2 2 2 2 2 2
0 1 1 3 7 17 41 99 239
1 0 1 2 5 12 29 70 169

f2(x) =
2x+ 2

x+ 2

n 1 2 3 4 5 6 7
x 4 7 24 41 140 239 816
y 3 5 17 29 99 169 577

Note that there are common terms between the sequence (an) and the continued
fraction convergents of

√
2. Namely

xn

yn
=

Pk

Qk

for (n, k) = (2, 3), (4, 5), (5, 6), (6, 7) for n, k ≤ 7.

n 1 2 3 4 5 6 7

|
√
2− xn

yn
| 0.0801 0.0142 0.0024 0.0004 0.000072 0.0000239 0.00000212

1
yn2 0.1111 0.0400 0.0034 0.0018 0.000102 0.0000350 0.00000300

Hence, we note that for f2(x) it appears that for all n ∈ N∣∣ √2− xn

yn

∣∣< 1

y2n
√
3 = [1; 1, 2]

1 1 2 1 2 1 2 1
0 1 1 2 5 7 19 26 71 97
1 0 1 1 3 4 11 15 41 56

f3(x) =
3x+ 3

x+ 3

n 1 2 3 4 5 6 7
x 3 5 12 19 45 71 168
y 2 3 7 11 26 41 97

Note that for (n, k) = (2, 3), (4, 5), (6, 7) for n, k ≤ 7.∣∣ √2− xn

yn

∣∣< 1

y2n

n 1 2 3 4 5 6 7

|
√
3− xn

yn
| 0.232 0.0654 0.0177 0.00477 0.00072 0.0000239 0.00000212

1
yn2 0.250 0.1111 0.0204 0.00826 0.00148 0.0005940 0.00010000

Hence, we note that for f3(x) it appears that for all n ∈ N∣∣ √3− xn

yn

∣∣< 1

y2n
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Conjecture 8.1: For any non-square d ∈ N, there exists an m ∈ N such that for
the FLT

f(x) =
mx+ d

x+m

and the corresponding sequence, for some z in the positive reals

(an)
∞
0 =

xn

yn
= fn(z)

has the property that, for Pn

Qn
being the nth continued fraction convergent to

√
d,

there exist infinitely many solutions in (n, k) ∈ N such that

xn

yn
=

Pk

Qk

Conjecture 8.2: For any non-square d ∈ N, there exists m ∈ N such that for the
FLT

f(x) =
mx+ d

x+m

and the corresponding sequence, for some z in the positive reals

(an)
∞
0 =

xn

yn
= fn(z)

has the property that for all n ∈ N∣∣ √d− xn

yn

∣∣< 1

y2n

Observation: Given α ∈ R with continued fraction [a1, a2, a3, ..., aℓ+1] periodic
with period ℓ, the FLT

f(x) =
Pℓ+1x+ (Pℓ+1(a2 − a1) + Pℓ)

Qℓ+1x+ (Qℓ+1(a2 − a1) +Qℓ)

has the property that it has a fixed point at α and for all n ∈ Z,

fn(a1) =
Pnℓ+1

Qnℓ+1
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